The weak Galerkin method for solving the incompressible Brinkman flow

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

A Direction Splitting Approach for Incompressible Brinkman Flow

The direction splitting approach proposed earlier in [7], aiming at the efficient solution of Navier-Stokes equations, is extended and adopted here to solve the Navier-Stokes-Brinkman equations describing incompressible flows in pure fluid and in porous media. The resulting pressure equation is a perturbation of the incompressibility constraint using a direction-wise factorized operator as prop...

متن کامل

HOMOTOPY PERTURBATION METHOD FOR SOLVING FLOW IN THE EXTRUSION PROCESSES

In this paper, the homotopy perturbation method (HPM) is considered for finding approximate solutions of two-dimensional viscous flow. This technique provides a sequence of functions which converges to the exact solution of the problem. The HPM does not need a small parameters in the equations, but; the perturbation method depends on small parameter assumption and the obtained results. In most ...

متن کامل

Wavelet Regularization of a Fourier-galerkin Method for Solving the 2d Incompressible Euler Equations

We employ a Fourier-Galerkin method to solve the 2D incompressible Euler equations, and study several ways to regularize the solution by wavelet filtering at each timestep. Real-valued orthogonal wavelets and complex-valued wavelets are considered, combined with either linear or nonlinear filtering. The results are compared with those obtained via classical viscous and hyperviscous regularizati...

متن کامل

The Meshless Local Petrov-Galerkin (MLPG) Method for Solving Incompressible Navier-Stokes Equations

The truly Meshless Local Petrov-Galerkin (MLPG) method is extended to solve the incompressible Navier-Stokes equations. The local weak form is modified in a very careful way so as to ovecome the so-called Babus̃ka-Brezzi conditions. In addition, The upwinding scheme as developed in Lin and Atluri (2000a) and Lin and Atluri (2000b) is used to stabilize the convection operator in the streamline di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2016

ISSN: 0377-0427

DOI: 10.1016/j.cam.2016.04.031